Flowchart: Preparation: IL-6



Text Box: HNF-1alphaText Box: APRE-1                                                    



Coronary Heart

Multiple Sclerosis

Text Box: h-AGTSLE                                                       

Text Box: IL-6






HNF-1 alpha plays an important role in IL-6 induced expression of the Human Angiotensinogen Gene.

·     Jain S, Li Y, Patil S, Kumar A.

pathology, new york medical college, valhalla, New York, United States.

Angiotensinogen (AGT) is the precursor of one of the most important vasoactive hormone angiotensin-II and this gene locus is associated with human essential hypertension. AGT is an acute phase protein and its gene expression is regulated by IL-6. Previous studies have identified three potential STAT-3 binding sites (APREs) located between -160 and -280 of the hAGT gene promoter but only APRE-1 (located between -271 and -279) was shown to be a bonafide enhancer for IL-6 induced promoter activity. We show here that APRE-2, located between -236 and -247, is indeed an HNF-1 alpha binding site and plays an important role in basal and IL-6 induced promoter activity of this gene. Our ChIP assay shows that HNF-1alpha binds to this region of the hAGT gene promoter and its recruitment is increased in the presence of IL-6 in Hep3B cells. We also show that the promoter activity of a deletion construct containing only 223 bp of the hAGT gene promoter (that contains only APRE-3) is increased after IL-6 treatment. Our ChIP assay shows that IL-6 treatment recruits STAT-3 to APRE-3 and suggests that this is also an IL6 responsive element. We have previously shown that GR binds to the proximal promoter of the hAGT gene. Since GR physically interacts with STAT-3, we propose that transcription factors GR, STAT-3 and HNF-alpha that bind to the nucleotide sequence located between -160 and -280 of the hAGT gene promoter are responsible for IL-6 induced promoter activity of this gene. Key words: hypertension, inflammation, CHIP, Hep3B, APRE.

PMID: 17475670 [PubMed - as supplied by publisher]

Mol Genet Metab. 2007 Apr;90(4):422-8. Epub 2006 Nov 22.Click here to read  Links

Association between plasma IL-6, the IL6 -174G>C gene variant and the metabolic syndrome in type 2 diabetes mellitus.

·     Stephens JW, Hurel SJ, Lowe GD, Rumley A, Humphries SE.

Diabetes Research Group, The Medical School, Swansea University, Swansea SA2 8PP, UK.

Elevated plasma interleukin-6 (IL-6) is associated with coronary heart disease (CHD), impaired glucose tolerance (IGT), and type 2 diabetes (T2DM). We and others have described an association between the human interleukin-6 -174G>C gene variant and body mass index (BMI). Within our previous sample of subjects with T2DM, we measured plasma IL-6 and grouped subjects by the WHO-defined metabolic syndrome, in order to study the association between the -174G>C gene variant, plasma IL-6 and the metabolic syndrome (and component parts). Genotype was obtained in 571 Caucasian subjects with plasma IL-6 measures. There was a significant association between genotype and plasma IL-6 (GG vs GC vs CC: 3.23+/-0.93pg/ml vs 3.42+/-0.95pg/ml vs 4.16+/-1.18pg/ml, p=0.02; for GG/GC vs CC p=0.008). No interactions were observed between genotype and the individual components of the metabolic syndrome in determining plasma IL-6. Increased plasma IL-6 was also associated with the number of components (none vs 1 vs 2 vs 3: 2.67+/-0.71pg/ml vs 2.97+/-0.94pg/ml vs 4.07+/-1.13pg/ml, p<0.0001). Within the sample, 76% of CC compared to 56% of GG subjects had the metabolic syndrome (p=0.007). Further analysis of association between the genotype and the components of the metabolic syndrome revealed no further associations than that with BMI previously described. The association of this gene variant with the metabolic syndrome is intimately linked with obesity per se. Further prospective work is required to explore the effect of this gene variant in relation to obesity, the metabolic syndrome and 'prediabetes'.

PMID: 17123852 [PubMed - in process

J Clin Lab Anal. 2006;20(6):255-9.Click here to read  Links

Lack of association of interleukin-6 and interleukin-8 gene polymorphisms in Chinese patients with systemic lupus erythematosus.

·     Huang CM, Huo AP, Tsai CH, Chen CL, Tsai FJ.

Division of Immunology and Rheumatology, China Medical University Hospital, Taichung, Taiwan.

The purpose of this study was to determine whether interleukin (IL)-6 and IL-8 gene polymorphisms were markers of susceptibility to or severity of systemic lupus erythematosus (SLE) in Chinese patients. The study included 150 Chinese patients with SLE. A total of 130 unrelated healthy individuals living in central Taiwan served as control subjects. Polymorphisms of the IL-6 and IL-8 gene were typed from genomic DNA. The genotypes, allelic frequencies, and carriage rates were compared between SLE patients and control subjects. The relationship between allelic frequencies and clinical manifestations of 135 SLE patients was evaluated. There were no statistically significant differences in IL-6 and IL-8 gene polymorphisms between the SLE and control groups (chi-squared test, P=0.53, chi(2)=1.27 and P=0.44, chi(2)=1.62, respectively). In addition, there was no significant association between the two groups in allelic frequency of IL-6 and IL-8 (P=0.89 and P=0.26, respectively). We also did not detect any association between the IL-6 and IL-8 genotype and clinical or laboratory profiles in SLE patients. The results suggest that the IL-6 and IL-8 gene polymorphisms are not related to SLE. (c) 2006 Wiley-Liss, Inc.

PMID: 17115422 [PubMed - indexed for MEDLINE]


































Chronic Immune Therapy Induces a Progressive Increase in Intratumoral T Suppressor Activity and a Concurrent Loss of Tumor-Specific CD8+ T Effectors in her-2/neu Transgenic Mice Bearing Advanced Spontaneous Tumors.

Nair RE, Kilinc MO, Jones SA, Egilmez NK.

James Graham Brown Cancer Center and Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202.

A single intratumoral injection of IL-12 and GM-CSF-encapsulated microspheres induces the complete regression of advanced spontaneous tumors in her-2/neu transgenic mice. However, tumor regression in this model is transient and long-term cure is not achieved due to recurrence. Posttherapy molecular analysis of immune activation/suppression markers within the tumor microenvironment demonstrated a dramatic up-regulation of IFN-gamma and a concomitant down-regulation of Forkhead/winged-helix protein 3 (Foxp3), TGFbeta, and IL-10 expression. Therapy-induced reversion of immune suppression was transient since all three markers of suppression recovered rapidly and surpassed pretherapy levels by day 7 after treatment, resulting in tumor resurgence. Repeated treatment enhanced short-term tumor regression, but did not augment long-term survival. Serial long-term analysis demonstrated that although chronic stimulation enhanced the IFN-gamma response, this was countered by a parallel increase in Foxp3, TGFbeta, and IL-10 expression. Analysis of tumor-infiltrating T lymphocyte populations showed that the expression of Foxp3 and IL-10 was associated with CD4(+)CD25(+) T cells. Repeated treatment resulted in a progressive increase in tumor-infiltrating CD4(+)CD25(+)Foxp3(+) T suppressor cells establishing their role in long-term neutralization of antitumor activity. Analysis of tumor-infiltrating CD8(+) T cells demonstrated that although treatment enhanced IFN-gamma production, antitumor cytotoxicity was diminished. Monitoring of CD8(+) T cells that specifically recognized a dominant MHC class I her-2/neu peptide showed a dramatic increase in tetramer-specific CD8(+) T cells after the first treatment; however, continuous therapy resulted in the loss of this population. These results demonstrate that both enhanced suppressor activity and deletion of tumor-specific T cells are responsible for the progressive loss of efficacy that is associated with chronic immune therapy.

PMID: 16751376 [PubMed - in process]


Lab Invest. 2006 May 15; [Epub ahead of print]

Related Articles, Links

Click here to read 
UBD, a downstream element of FOXP3, allows the identification of LGALS3, a new marker of human regulatory T cells.

Ocklenburg F, Moharregh-Khiabani D, Geffers R, Janke V, Pfoertner S, Garritsen H, Groebe L, Klempnauer J, Dittmar KE, Weiss S, Buer J, Probst-Kepper M.

1Junior Research Group for Xenotransplantation, Department of Visceral and Transplant Surgery,
Hannover Medical School, Hannover, Germany.

Here, we report the identification of the ubiquitin-like gene UBD as a downstream element of FOXP3 in human activated regulatory CD4(+)CD25(hi) T cells (T(reg)). Retroviral transduction of UBD in human allo-reactive effector CD4(+) T helper (T(h)) cells upregulates CD25 and mediates downregulation of IL4 and IL5 expression similar to overexpression of FOXP3. Moreover, UBD impairs T(h) cell proliferation without upregulation of FOXP3 and impairs calcium mobilization. In the presence of ionomycin, overexpression of UBD in T(h) cells leads to the induction of IL1R2 that resemble FOXP3-transduced T(h) cells and naturally derived T(reg) cells. A comparison of the transcriptome of FOXP3- and UBD-transduced T(h) cells with T(reg) cells allowed the identification of the gene LGALS3. However, high levels of LGALS3 protein expression were observed only in human CD4(+)CD25(hi) derived T(reg) cells and FOXP3-transduced T(h) cells, whereas little was induced in UBD-transduced T(h) cells. Thus, UBD contributes to the anergic phenotype of human regulatory T cells and acts downstream in FOXP3 induced regulatory signaling pathways, including regulation of LGALS3 expression. High levels of LGALS3 expression represent a FOXP3-signature of human antigen-stimulated CD4(+)CD25(hi) derived regulatory T cells.Laboratory Investigation advance online publication, 15 May 2006; doi:10.1038/labinvest.3700432.

PMID: 16702978 [PubMed - as supplied by publisher]































J Bone Miner Res. 2006 Jun;21(6):946-55.

Related Articles, Links

Click here to read 
Fibroblast growth factor-2 is an immediate-early gene induced by mechanical stress in osteogenic cells.

Li CF, Hughes-Fulford M.

Laboratory of Cell Growth, Northern California Institute for Research and Education, San Francisco, California, USA.

Fifteen minutes of physiological MS induces FGF-2 in osteogenic cells. Here, we show that MS induced proliferation in both MC3T3-E1 and BMOp cells isolated from Fgf2(+/+) mice; Fgf2(-/-) BMOp cells required exogenous FGF-2 for a normal proliferation response. The induction of fgf-2 is mediated by PKA and ERK pathways. INTRODUCTION: Mechanical stress (MS) induces gene expression and proliferation of osteogenic MC3T3-E1 cells. We have previously shown that physiological levels of MS in MC3T3-E1 cells causes extracellular signal-regulated kinase (ERK)1/2 phosphorylation. Here we evaluate the induction and importance of fibroblast growth factor-2 (FGF-2) for MS-induced proliferation. MATERIALS AND METHODS: We characterized the MS induction of fgf-2 using a 15-minute pulse of 120 mustrain and studied the stability of fgf-2 message using actinomycin D. Bone marrow stromal cells (BMOp) isolated from Fgf2(-/-) and Fgf2(+/+) mice were used to study the importance of FGF-2 in MS-induced proliferation. RESULTS: We found that the induction of fgf-2 by MS is dependent on both protein kinase A (PKA) and ERK pathways. MS transiently induces fgf-2 within 30 minutes. FGF-2 receptor (FGFR2) was also significantly increased within 1 h. All three isoforms of FGF-2 (24, 22, and 18 kDa) were significantly increased by MS. The MS-mediated increase of fgf-2 mRNA was caused by new synthesis and not stabilization. Pretreatment of MC3T3-E1 cells with cycloheximide showed that the induction of fgf-2 did not require new protein synthesis. Pretreating MC3T3-E1 cells with the mitogen-activated protein kinase (MAPK)/ERK kinase 1/2 (MEK1/2) inhibitor, U0126, or H-89, a PKA inhibitor, significantly inhibited the induction of fgf-2, showing that mechanical induction of fgf-2 is dependent on ERK and PKA signaling pathways. The downstream consequence of a single 15-minute stress pulse was a 3.5-fold increase in cell number in MC3T3-E1 compared with growth in nonstressed control cells. In studies using bone marrow osteoprogenitor cells (BMOp) isolated from Fgf2(+/+)and Fgf2(-/-) mice, we found that FGF-2 was necessary for a full proliferative response to MS. CONCLUSIONS: These studies show that FGF-2 is an immediate-early gene induced by MS, and its expression is mediated by both the PKA and MAPK signal transduction pathways. FGF-2 was required for a full proliferative response.

PMID: 16753025 [PubMed - in process]