Flowchart: Preparation: Igf



Text Box: EgfText Box: Rack1





Text Box: PP2A


Breast Cancer


Text Box: Igf                                                  





Text Box: Egfr                                              


Mol Cell Biol. 2006 Jun;26(11):4041-51.

Related Articles, Links

Click here to read 
Insulin-Like Growth Factor I Controls a Mutually Exclusive Association of RACK1 with Protein Phosphatase 2A and {beta}1 Integrin To Promote Cell Migration.

Kiely PA, O'gorman D, Luong K, Ron D, O'connor R.

Cell Biology Laboratory, Department of Biochemistry, BioSciences Institute, National University of Ireland, Cork, Ireland. r.oconnor@ucc.ie.

The WD repeat scaffolding protein RACK1 can mediate integration of the insulin-like growth factor I receptor (IGF-IR) and integrin signaling in transformed cells. To address the mechanism of RACK1 function, we searched for regulatory proteins that associate with RACK1 in an IGF-I-dependent manner. The serine threonine phosphatase protein phosphatase 2A (PP2A) was found associated with RACK1 in serum-starved cells, and it dissociated immediately upon stimulation with IGF-I. This dissociation of PP2A from RACK1 and an IGF-I-mediated decrease in cellular PP2A activity did not occur in cells expressing either the serine 1248 or tyrosine 1250/1251 mutants of the IGF-IR that do not interact with RACK1. Recombinant RACK1 could bind to PP2A in vitro and restore phosphatase activity to PP2A from IGF-I-stimulated cells. Ligation of integrins with fibronectin or Matrigel was sufficient to facilitate IGF-I-mediated dissociation of PP2A from RACK1 and also to recruit beta1 integrin as PP2A dissociated. By using TAT-fused N-terminal and C-terminal deletion mutants of RACK1, we determined that both PP2A and beta1 integrin interact in the C terminus of RACK1 within WD repeats 4 to 7. This suggests that integrin ligation displaces PP2A from RACK1. MCF-7 cells overexpressing RACK1 exhibited enhanced motility, which could be reversed by the PP2A inhibitor okadaic acid. Small interfering RNA-mediated suppression of RACK1 also decreased the migratory capacity of DU145 cells. Taken together, our findings indicate that RACK1 enhances IGF-I-mediated cell migration through its ability to exclusively associate with either beta1 integrin or PP2A in a complex at the IGF-IR.


Cancer Res. 2006 May 15;66(10):5304-13.

Related Articles, Links

Click here to read 
Epidermal Growth Factor Induces Insulin Receptor Substrate-2 in Breast Cancer Cells via c-Jun NH2-Terminal Kinase/Activator Protein-1 Signaling to Regulate Cell Migration.

Cui X, Kim HJ, Kuiatse I, Kim H, Brown PH, Lee AV.

Breast Center, Departments of Medicine and Molecular and Cellular Biology, Baylor College of Medicine and Methodist Hospital, Houston, Texas.

The epidermal growth factor (EGF) and insulin-like growth factor (IGF) signaling pathways are critically involved in cancer development and progression. However, how these two signals cross-talk with each other to regulate cancer cell growth is not clearly understood. In this study, we found that EGF remarkably induced expression of major IGF signaling components, insulin receptor substrate (IRS)-1 and IRS-2, an effect that could be blocked by EGF receptor (EGFR) tyrosine kinase inhibitors. Although both extracellular signal-regulated kinase and c-Jun NH(2)-terminal kinase (JNK) signaling pathways were involved in the EGF up-regulation of IRS-1, the IRS-2 induction by EGF was specifically mediated by JNK signaling. Consistent with this, EGF increased IRS-2 promoter activity, which was associated with recruitment of activator protein-1 (AP-1) transcription factors and was inhibited by blocking AP-1 activity. Moreover, EGF treatment enhanced IGF-I and integrin engagement-elicited tyrosine phosphorylation of IRS and their downstream signaling, such as binding to phosphatidylinositol 3'-kinase regulatory subunit p85. Finally, repressing the induction of IRS-2 levels abolished the EGF enhancement of cell motility, suggesting that increased IRS-2 is essential for the EGF regulation of breast cancer cell migration. Taken together, our results reveal a novel mechanism of cross-talk between the EGF and IGF signaling pathways, which could have implications in therapeutic applications of targeting EGFR in tumors. Because AP-1 activity is involved in breast cancer progression, our work may also suggest IRS-2 as a useful marker for aggressive breast cancer. (Cancer Res 2006; 66(10): 5304-13).

PMID: 16707456 [PubMed - in process]