Flowchart: Preparation: Foxo
 

 


                  

Text Box: PKBText Box: InsulinText Box: Akt                                                    

                                          

                     

                                                       

                                                         

Text Box: FoxoText Box: Daf-16                                                          

                                                  

                                                    

                                                            

BMC Dev Biol. 2006 Oct 4;6:45.Click here to read Click here to read  Links

Activated AKT/PKB signaling in C. elegans uncouples temporally distinct outputs of DAF-2/insulin-like signaling.

·     Gami MS, Iser WB  Hanselman KB, Wolkow CA.

Laboratory of Neurosciences, NIA, NIH, Baltimore, MD, USA. gamimi@grc.nia.nih.gov

BACKGROUND: In the nematode, Caenorhabditis elegans, a conserved insulin-like signaling pathway controls larval development, stress resistance and adult lifespan. AGE-1, a homolog of the p110 catalytic subunit of phosphoinositide 3-kinases (PI3K) comprises the major known effector pathway downstream of the insulin receptor, DAF-2. Phospholipid products of AGE-1/PI3K activate AKT/PKB kinase signaling via PDK-1. AKT/PKB signaling antagonizes nuclear translocation of the DAF-16/FOXO transcription factor. Reduced AGE-1/PI3K signaling permits DAF-16 to direct dauer larval arrest and promote long lifespan in adult animals. In order to study the downstream effectors of AGE-1/PI3K signaling in C. elegans, we conducted a genetic screen for mutations that suppress the constitutive dauer arrest phenotype of age-1(mg109) animals. RESULTS: This report describes mutations recovered in a screen for suppressors of the constitutive dauer arrest (daf-C) phenotype of age-1(mg109). Two mutations corresponded to alleles of daf-16. Two mutations were gain-of-function alleles in the genes, akt-1 and pdk-1, encoding phosphoinositide-dependent serine/threonine kinases. A fifth mutation, mg227, located on chromosome X, did not correspond to any known dauer genes, suggesting that mg227 may represent a new component of the insulin pathway. Genetic epistasis analysis by RNAi showed that reproductive development in age-1(mg109);akt-1(mg247) animals was dependent on the presence of pdk-1. Similarly, reproductive development in age-1(mg109);pdk-1(mg261) animals was dependent on akt-1. However, reproductive development in age-1(mg109); mg227 animals required only akt-1, and pdk-1 activity was dispensable in this background. Interestingly, while mg227 suppressed dauer arrest in age-1(mg109) animals, it enhanced the long lifespan phenotype. In contrast, akt-1(mg247) and pdk-1(mg261) did not affect lifespan or stress resistance, while both daf-16 alleles fully suppressed these phenotypes. CONCLUSION: A screen for suppressors of PI3K mutant phenotypes identified activating mutations in two known pathway components, providing insights into their regulation. In particular, the interdependence of akt-1 and pdk-1, even in activated forms, supports the existence of AGE-1-independent pathways for these phospholipid-dependent kinases. Phenotypic analysis of these alleles shows that the larval and adult outputs of AGE-1/PI3K are fully separable in these mutants.

PMID: 17020605 [PubMed - indexed for MEDLINE]

 

Curr Biol. 2006 Oct 24;16(20):1977-85.Click here to read  Links

Akt and FOXO dysregulation contribute to infection-induced wasting in Drosophila.

        Dionne MS, Pham LN, Shirasu-Hiza M, Schneider DS.

Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305-5124, USA.

BACKGROUND: Studies in Drosophila have taught us a great deal about how animals regulate the immediate innate immune response, but we still know little about how infections cause pathology. Here, we examine the pathogenesis associated with Mycobacterium marinum infection in the fly. M. marinum is closely related to M. tuberculosis, which causes tuberculosis in people. RESULTS: A microarray analysis showed that metabolism is profoundly affected in M. marinum-infected flies. A genetic screen identified foxo mutants as slower-dying after infection than wild-type flies. FOXO activity is inhibited by the insulin effector kinase Akt; we show that Akt activation is systemically reduced as a result of M. marinum infection. Finally, we show that flies infected with Mycobacterium marinum undergo a process like wasting: They progressively lose metabolic stores, in the form of fat and glycogen. They also become hyperglycemic. In contrast, foxo mutants exhibit less wasting. CONCLUSIONS: In people, many infections--including tuberculosis--can cause wasting, much as we see in Drosophila. Our study is the first examination of the metabolic consequences of infection in a genetically tractable invertebrate and gives insight into the metabolic consequences of mycobacterial infection, implicating impaired insulin signaling as a key mediator of these events. These results suggest that the fly can be used to study more than the immediate innate immune response to infection; it can also be used to understand the physiological consequences of infection and the immune response.

PMID: 17055976 [PubMed - indexed for MEDLINE]

EMBO J. 2006 Dec 21; [Epub ahead of print]

Foxo and Fos regulate the decision between cell death and survival in response to UV irradiation.

·     Luo X, Puig O, Hyun J, Bohmann D, Jasper H.

Department of Biology, University of Rochester, Rochester, NY, USA.

Cells damaged by environmental insults have to be repaired or eliminated to ensure tissue homeostasis in metazoans. Recent studies suggest that the balance between cell survival signals and pro-apoptotic stimuli controls the decision between cell repair and death. How these competing signals are integrated and interpreted to achieve accurate control over cell fate in vivo is incompletely understood. Here, we show that the Forkhead Box O transcription factor Foxo and the AP-1 transcription factor DFos are required downstream of Jun-N-terminal kinase signaling for the apoptotic response to UV-induced DNA damage in the developing Drosophila retina. Both transcription factors regulate the pro-apoptotic gene hid. Our results indicate that UV-induced apoptosis is repressed by receptor tyrosine kinase-mediated inactivation of Foxo. These data suggest that integrating stress and survival signals through Foxo drives the decision between cell death and repair of damaged cells in vivo.

PMID: 17183370 [PubMed - as supplied by publisher

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chronic Immune Therapy Induces a Progressive Increase in Intratumoral T Suppressor Activity and a Concurrent Loss of Tumor-Specific CD8+ T Effectors in her-2/neu Transgenic Mice Bearing Advanced Spontaneous Tumors.

Nair RE, Kilinc MO, Jones SA, Egilmez NK.

James Graham Brown Cancer Center and Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202.

A single intratumoral injection of IL-12 and GM-CSF-encapsulated microspheres induces the complete regression of advanced spontaneous tumors in her-2/neu transgenic mice. However, tumor regression in this model is transient and long-term cure is not achieved due to recurrence. Posttherapy molecular analysis of immune activation/suppression markers within the tumor microenvironment demonstrated a dramatic up-regulation of IFN-gamma and a concomitant down-regulation of Forkhead/winged-helix protein 3 (Foxp3), TGFbeta, and IL-10 expression. Therapy-induced reversion of immune suppression was transient since all three markers of suppression recovered rapidly and surpassed pretherapy levels by day 7 after treatment, resulting in tumor resurgence. Repeated treatment enhanced short-term tumor regression, but did not augment long-term survival. Serial long-term analysis demonstrated that although chronic stimulation enhanced the IFN-gamma response, this was countered by a parallel increase in Foxp3, TGFbeta, and IL-10 expression. Analysis of tumor-infiltrating T lymphocyte populations showed that the expression of Foxp3 and IL-10 was associated with CD4(+)CD25(+) T cells. Repeated treatment resulted in a progressive increase in tumor-infiltrating CD4(+)CD25(+)Foxp3(+) T suppressor cells establishing their role in long-term neutralization of antitumor activity. Analysis of tumor-infiltrating CD8(+) T cells demonstrated that although treatment enhanced IFN-gamma production, antitumor cytotoxicity was diminished. Monitoring of CD8(+) T cells that specifically recognized a dominant MHC class I her-2/neu peptide showed a dramatic increase in tetramer-specific CD8(+) T cells after the first treatment; however, continuous therapy resulted in the loss of this population. These results demonstrate that both enhanced suppressor activity and deletion of tumor-specific T cells are responsible for the progressive loss of efficacy that is associated with chronic immune therapy.

PMID: 16751376 [PubMed - in process]

 

Lab Invest. 2006 May 15; [Epub ahead of print]

Related Articles, Links

Click here to read 
UBD, a downstream element of FOXP3, allows the identification of LGALS3, a new marker of human regulatory T cells.

Ocklenburg F, Moharregh-Khiabani D, Geffers R, Janke V, Pfoertner S, Garritsen H, Groebe L, Klempnauer J, Dittmar KE, Weiss S, Buer J, Probst-Kepper M.

1Junior Research Group for Xenotransplantation, Department of Visceral and Transplant Surgery,
Hannover Medical School, Hannover, Germany.

Here, we report the identification of the ubiquitin-like gene UBD as a downstream element of FOXP3 in human activated regulatory CD4(+)CD25(hi) T cells (T(reg)). Retroviral transduction of UBD in human allo-reactive effector CD4(+) T helper (T(h)) cells upregulates CD25 and mediates downregulation of IL4 and IL5 expression similar to overexpression of FOXP3. Moreover, UBD impairs T(h) cell proliferation without upregulation of FOXP3 and impairs calcium mobilization. In the presence of ionomycin, overexpression of UBD in T(h) cells leads to the induction of IL1R2 that resemble FOXP3-transduced T(h) cells and naturally derived T(reg) cells. A comparison of the transcriptome of FOXP3- and UBD-transduced T(h) cells with T(reg) cells allowed the identification of the gene LGALS3. However, high levels of LGALS3 protein expression were observed only in human CD4(+)CD25(hi) derived T(reg) cells and FOXP3-transduced T(h) cells, whereas little was induced in UBD-transduced T(h) cells. Thus, UBD contributes to the anergic phenotype of human regulatory T cells and acts downstream in FOXP3 induced regulatory signaling pathways, including regulation of LGALS3 expression. High levels of LGALS3 expression represent a FOXP3-signature of human antigen-stimulated CD4(+)CD25(hi) derived regulatory T cells.Laboratory Investigation advance online publication, 15 May 2006; doi:10.1038/labinvest.3700432.

PMID: 16702978 [PubMed - as supplied by publisher]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

J Bone Miner Res. 2006 Jun;21(6):946-55.

Related Articles, Links

Click here to read 
Fibroblast growth factor-2 is an immediate-early gene induced by mechanical stress in osteogenic cells.

Li CF, Hughes-Fulford M.

Laboratory of Cell Growth, Northern California Institute for Research and Education, San Francisco, California, USA.

Fifteen minutes of physiological MS induces FGF-2 in osteogenic cells. Here, we show that MS induced proliferation in both MC3T3-E1 and BMOp cells isolated from Fgf2(+/+) mice; Fgf2(-/-) BMOp cells required exogenous FGF-2 for a normal proliferation response. The induction of fgf-2 is mediated by PKA and ERK pathways. INTRODUCTION: Mechanical stress (MS) induces gene expression and proliferation of osteogenic MC3T3-E1 cells. We have previously shown that physiological levels of MS in MC3T3-E1 cells causes extracellular signal-regulated kinase (ERK)1/2 phosphorylation. Here we evaluate the induction and importance of fibroblast growth factor-2 (FGF-2) for MS-induced proliferation. MATERIALS AND METHODS: We characterized the MS induction of fgf-2 using a 15-minute pulse of 120 mustrain and studied the stability of fgf-2 message using actinomycin D. Bone marrow stromal cells (BMOp) isolated from Fgf2(-/-) and Fgf2(+/+) mice were used to study the importance of FGF-2 in MS-induced proliferation. RESULTS: We found that the induction of fgf-2 by MS is dependent on both protein kinase A (PKA) and ERK pathways. MS transiently induces fgf-2 within 30 minutes. FGF-2 receptor (FGFR2) was also significantly increased within 1 h. All three isoforms of FGF-2 (24, 22, and 18 kDa) were significantly increased by MS. The MS-mediated increase of fgf-2 mRNA was caused by new synthesis and not stabilization. Pretreatment of MC3T3-E1 cells with cycloheximide showed that the induction of fgf-2 did not require new protein synthesis. Pretreating MC3T3-E1 cells with the mitogen-activated protein kinase (MAPK)/ERK kinase 1/2 (MEK1/2) inhibitor, U0126, or H-89, a PKA inhibitor, significantly inhibited the induction of fgf-2, showing that mechanical induction of fgf-2 is dependent on ERK and PKA signaling pathways. The downstream consequence of a single 15-minute stress pulse was a 3.5-fold increase in cell number in MC3T3-E1 compared with growth in nonstressed control cells. In studies using bone marrow osteoprogenitor cells (BMOp) isolated from Fgf2(+/+)and Fgf2(-/-) mice, we found that FGF-2 was necessary for a full proliferative response to MS. CONCLUSIONS: These studies show that FGF-2 is an immediate-early gene induced by MS, and its expression is mediated by both the PKA and MAPK signal transduction pathways. FGF-2 was required for a full proliferative response.

PMID: 16753025 [PubMed - in process]