Flowchart: Preparation: Bmp


Text Box: Smad1 Text Box: Ecsit




Text Box: NgfText Box: Bmp                 


Text Box: Smad6                                                                              


Text Box: Egr3                                        

Text Box: Hes1Text Box: Mtap1b                                               





Bone morphogenetic proteins (Bmps) are members of the transforming growth factor beta (TGFbeta) superfamily that play critical roles during mouse embryogenesis. Signaling by Bmp receptors is mediated mainly by Smad proteins. In this study, we show that a targeted null mutation of Ecsit, encoding a signaling intermediate of the Toll pathway, leads to reduced cell proliferation, altered epiblast patterning, impairment of mesoderm formation, and embryonic lethality at embryonic day 7.5 (E7.5), phenotypes that mimic the Bmp receptor type1a (Bmpr1a) null mutant. In addition, specific Bmp target gene expression is abolished in the absence of Ecsit. Biochemical analysis demonstrates that Ecsit associates constitutively with Smad4 and associates with Smad1 in a Bmp-inducible manner. Together with Smad1 and Smad4, Ecsit binds to the promoter of specific Bmp target genes. Finally, knock-down of Ecsit with Ecsit-specific short hairpin RNA inhibits both Bmp and Toll signaling. Therefore, these results show that Ecsit functions as an essential component in two important signal transduction pathways and establishes a novel role for Ecsit as a cofactor for Smad proteins in the Bmp signaling pathway


Bone morphogenetic protein activities are enhanced by 3',5'-cyclic adenosine monophosphate through suppression of Smad6 expression in osteoprogenitor cells.

Sugama R, Koike T, Imai Y, Nomura-Furuwatari C, Takaoka K.

Department of Orthopaedic Surgery, Osaka City University Medical School, Asahimachi 1-4-3, Abenoku, Osaka 545-8585, Japan.

Bone morphogenetic proteins (BMPs) belong to the transforming growth factor (TGF)-beta superfamily, and some display potent osteogenic activity both in vivo and in vitro. The BMP signaling cascade involving BMP receptors at the cell membrane and intracellular messengers (Smads) has been elucidated, but the regulatory mechanisms of BMP signaling have not been clarified. We previously found that pentoxifyline (PeTx), a nonspecific inhibitor of phosphodiesterase (PDE), and rolipram, a PDE-4-specific inhibitor, enhance BMP-4-induced osteogenic differentiation of mesenchymal cells, probably through the elevation of intracellular cyclic adenosine monophosphate (cAMP) accumulation and modulation of BMP signaling pathways as enhanced BMP-4 action was reproduced by addition of dibutylyl-cAMP (dbcAMP). However, the precise mechanisms underlying the enhancing effects of those agents on BMP signaling were not completely revealed. As already reported, BMPs utilize a specific intracellular signaling cascade to target genes via R-Smads (Smad1,5,8), Co-Smad (Smad4) and I-Smads (Smad6,7). One possibility for cAMP-mediated effects on BMP signaling might be suppression of I-Smads expression since these proteins form a negative feedback loop in BMP signaling. To examine this possibility, changes in I-Smad (Smad6) expression on addition of dbcAMP or PeTx were examined in a bone-marrow-derived osteogenic cell line (ST2). Alkaline phosphatase activity in ST2 cells was consistently induced by BMP-4 treatment (300 ng/ml), and Smad6 mRNA expression was also induced by BMP-4 treatment. Although concurrent treatment of ST2 cells with BMP-4 and dbcAMP elicited further activation of alkaline phosphatase, addition of dbcAMP reduced BMP-4-induced Smad6 expression in a dose-dependent manner. Furthermore, detection of phosphorylated Smad1/5/8 on Western blotting analysis was prolonged, suggesting prolonged kinase activity of BMP receptors through suppressed expression of Smad6. Elevated intracellular cAMP might thus enhance BMP signaling by suppressing Smad6 induction and prolonging intracellular BMP signaling.

PMID: 16203197 [PubMed - as supplied by publisher]


 BMP Enhances Transcriptional Responses to NGF During PC12 Cell Differentiation.

Lonn P, Zaia K, Israelsson C, Althini S, Usoskin D, Kylberg A, Ebendal T.

Department of Neuroscience, Biomedical Center, Uppsala University, Box 587, Uppsala, SE, 751 23, Sweden, ted.ebendal@neuro.uu.se.

Bone morphogenetic proteins (BMPs) enhance neurite outgrowth in nerve growth factor (NGF)-stimulated PC12 cells. To investigate the mechanism of this potentiating effect, real-time PCR was used to analyze the expression of 45 selected genes. A robust increase in expression of 10 immediate early genes including Egr1-4, Hes1, Junb, Jun and Fos was observed already after 1 h treatment with NGF alone. NGF plus BMP4 further increased these transcripts at 1 h and activated 18 additional genes. BMP4 alone induced Smad6, Mtap1b and Hes1. Egr3 was the gene most strongly upregulated by NGF and BMP4. However, luciferase assays showed that the cloned Egr3 proximal promoter was not involved in the BMP4 potentiation. Blocking Egr3 and Junb function by dominant-negative constructs reduced neurite outgrowth under stimulating conditions, proving that activation of members of both the Egr and Jun families is necessary for maximal PC12 cell response to NGF and BMP4.

PMID: 16187211 [PubMed - in process]